I wouldn't say that in a material model you're actually multiplying colors together. It just happens that when you record the amount of reflected low-, medium-, and high-frequency light under a spectrally flat light source, you can display these data as light and and perceive a color.
With fancier equipment, you could record the full reflectance spectrum from every angle -- and polarization, too, why not -- and be able to predict what the (simple) material would look like under every light source. Maybe you're worrying about fluorescence, but then just record the data under varying monochromatic light sources.
If you're just talking about how RGB is spectrally anemic, sure, that's why lighting your house with only R, G, and B LEDs makes everything look so strange.
Spectral multiplication, as I understand it, is just a consequence of the law that if you increase the intensity of received radiation by a certain factor, then the intensity of the reflected radiation will increase by the same factor. Is there some important nonlinearity I'm missing? Where is the meaninglessness?
I wouldn't say that in a material model you're actually multiplying colors together. It just happens that when you record the amount of reflected low-, medium-, and high-frequency light under a spectrally flat light source, you can display these data as light and and perceive a color.
With fancier equipment, you could record the full reflectance spectrum from every angle -- and polarization, too, why not -- and be able to predict what the (simple) material would look like under every light source. Maybe you're worrying about fluorescence, but then just record the data under varying monochromatic light sources.
If you're just talking about how RGB is spectrally anemic, sure, that's why lighting your house with only R, G, and B LEDs makes everything look so strange.
Spectral multiplication, as I understand it, is just a consequence of the law that if you increase the intensity of received radiation by a certain factor, then the intensity of the reflected radiation will increase by the same factor. Is there some important nonlinearity I'm missing? Where is the meaninglessness?